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ABSTRACT

Protein diffusion models have emerged as a promising approach for protein design.
One such pioneering model is Genie, a method that asymmetrically represents pro-
tein structures during the forward and backward processes, using simple Gaussian
noising for the former and expressive SE(3)-equivariant attention for the latter. In
this work we introduce Genie 2, extending Genie to capture a larger and more
diverse protein structure space through architectural innovations and massive data
augmentation. Genie 2 adds motif scaffolding capabilities via a novel multi-motif
framework that designs co-occurring motifs with unspecified inter-motif positions
and orientations. This makes possible complex protein designs that engage multiple
interaction partners and perform multiple functions. On both unconditional and
conditional generation, Genie 2 achieves state-of-the-art performance, outperform-
ing all known methods on key design metrics including designability, diversity, and
novelty. Genie 2 also solves more motif scaffolding problems than other methods
and does so with more unique and varied solutions. Taken together, these advances
set a new standard for structure-based protein design.

1 INTRODUCTION

The design of proteins with novel structures and functions has emerged as a potent technology
in therapeutic (Silva et al., 2019; Cao et al., 2020; Shanehsazzadeh et al., 2023) and industrial
applications (Quijano-Rubio et al., 2021; Huddy et al., 2024). Generative AI has driven recent
advances in protein design, most notably diffusion (Ho et al., 2020; Song et al., 2020) and flow
matching (Lipman et al., 2022) models, as has the revolution in protein structure prediction sparked
by AlphaFold 2 (Jumper et al., 2021). Proteins are one-dimensional polymers of amino acids
("sequences") that fold into three-dimensional shapes ("structures"). Generative protein models
mirror this delineation, with most operating either in the sequence or structural domain. One rationale
for sequence-based methods is that sequences are what ultimately get synthesized as functioning
biomolecules, while structures require an additional structure-to-sequence map (inverse folding).
Sequence-based models include EvoDiff (Alamdari et al., 2023), a discrete diffusion model that uses
order-agnostic autoregressive diffusion with a ByteNet-style (Kalchbrenner et al., 2016) architecture
for denoising. EvoDiff is a promising and complementary approach to structure-based design,
currently the prevalent paradigm.

Structure-based methods (Trippe et al., 2022; Wu et al., 2024a; Lin and AlQuraishi, 2023; Ingraham
et al., 2023; Yim et al., 2023b;a; Anand and Achim, 2022; Fu et al., 2024; Wang et al., 2024) focus on
modeling structure space and typically employ separate inverse folding models such as ProteinMPNN
(Dauparas et al., 2022) to propose plausible sequences given a generated structure. Their key rationale
is that structure more closely associates with protein function than sequence. Among them, Genie
performs diffusion on backbone atom coordinates and uses an SE(3)-equivariant denoiser to reason
over a cloud of reference frames constructed from backbone coordinates. FrameDiff (Yim et al.,
2023b) uses a diffusion process in SE(3) on backbone frames with an AlphaFold-inspired architecture
for denoising. FrameFlow (Yim et al., 2023a) adopts the general architecture of FrameDiff but uses
flow matching instead. Chroma (Ingraham et al., 2023) combines a correlated diffusion process
that respects statistical properties of natural proteins with an efficient graph neural network. It also
includes a separate design network that predicts sequences and side-chain atoms given a generated
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backbone. More recently, Proteus (Wang et al., 2024) uses a similar diffusion process and architecture
as FrameDiff but introduces graph triangle blocks that combine the expressiveness of triangle attention
from AlphaFold 2 with faster runtimes by limiting attention to nearby residues.

The inter-connectedness of sequence and structure suggests that integrating their representations
would advance protein design, particularly for conditional tasks that require pre-specified sequence
or structural elements. Recent methods reflect this. One approach integrates sequence information as
a condition of a structure-based diffusion process, as RFDiffusion (Watson et al., 2023) does when
designing proteins with known sequence fragments. Another approach performs diffusion or flow
matching in a joint sequence-structure space, as done by MultiFlow (Campbell et al., 2024) when
it combines an SE(3) structural flow with a discrete sequence flow. There have also been attempts
(Costa et al., 2023) at jointly encoding sequence and structure in a latent space and diffusing in this
space; however, the approach remains nascent.

Whether encoded by sequence or structure, function is what is sought in protein design. Many
functions, including interactions with small molecules and other proteins, are governed by few
residues, or a motif. Achieving prescribed functions can thus often be distilled into designing a
protein with a specific motif (e.g., an enzyme active site (Wang et al., 2022) or antigen-binding site
(Yang et al., 2021)), known as motif scaffolding. Diffusion models have shown success in this realm:
Wu et al. (2024b) developed a sequential Monte Carlo sampler called Twisted Diffusion Sampler
and applied it to FrameDiff to scaffold motifs while RFDiffusion and an updated FrameFlow (Yim
et al., 2024) were explicitly trained on motif-conditioned tasks. Yet, current models cannot design
proteins with multiple independent motifs, as they require inter-motif positions and orientations to
be known a priori. Proteins often comprise independent functional sites, either as separate domains
connected by a flexible linker or as one globular domain, such as an enzyme with multiple substrate
binding sites or a scaffolding protein that engages multiple signaling ligands. The ability to design
such proteins, which we term multi-motif scaffolding, would enable the development of new enzymes
(Ebrahimi and Samanta, 2023), biosensors (Yang et al., 2021), and therapeutics that disrupt or enhance
protein-protein interactions (Marchand et al., 2022). Concurrent with our work, Castro et al. (2024)
employed an established non-diffusion model, RFjoint2, to inpaint an immunogen containing three
distinct epitopes. This approach appears promising but has yet to be systematically benchmarked.

In this work, we extend Genie to support single- and multi-motif scaffolding. We also improve the
core Genie model through architectural modifications and enhancements to its training data and
process. The resulting Genie 2 better captures protein structure space. When compared to existing
models, Genie 2 sets state-of-the-art results in designability, diversity, and novelty. In addition,
Genie 2 surpasses RFDiffusion on motif scaffolding tasks, both in the number of solved problems
and the diversity of designs. We also curate a benchmark set comprising 6 multi-motif scaffolding
problems from the literature and show that Genie 2 can propose complex designs incorporating
multiple functional motifs, a challenge unaddressed by existing protein diffusion models.

2 PREVIOUS GENIE MODEL

Diffusion with asymmetric protein representations In contrast to all other SE(3)-equivariant
diffusion models for protein generation, which use unified representations for the forward and
backward diffusion processes, Genie represents proteins as point clouds of Cα atoms in the forward
process and as clouds of reference frames in the reverse process. Let x = [x1,x2, · · · ,xN ] be a
sequence of Cα coordinates of length N . Given a sample x0 from the unknown protein structure
distribution, Genie’s forward process gradually adds isotropic Gaussian noise through a cosine
variance schedule β = [β1, β2, · · · , βT ], where T is the total number of diffusion steps (set to 1,000).

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI) (1)

By reparameterization, we have

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I) where ᾱt =

t∏
s=1

αs and αt = 1− βt (2)

Since the isotropic Gaussian noise added at each diffusion step is small, the corresponding reverse
process could be approximated with a Gaussian distribution:

p(xt−1|xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)I) (3)
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Figure 1: Genie 2 architecture (top), which extends Genie to enable scaffolding on (multiple) motifs.
It consists of an SE(3)-invariant encoder that transforms input features into single residue and pair
residue-residue representations, and an SE(3)-equivariant decoder that updates frames based on single
representations, pair representations, and input reference frames. Example inputs to the model for
single- and multi-motif scaffolding problems are shown (bottom-left green box), along with the
corresponding generated designs (bottom-right box). In single motif scaffolding (top row), the motif
may be contiguous or non-contiguous but all inter-residue positions and orientations are defined. In
multi-motif scaffolding (bottom row), inter-motif geometry is left unspecified. For input sequences,
white boxes denote masked out regions corresponding to the scaffold.

where

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(F (xt), t)

)
Σθ(xt, t) = γ2 · βt

F (·) is the Frenet-Serret frame construction process based on a sequence of coordinates (Appendix
A.1), and γ ∈ [0, 1] controls the scale of injected noise in the reverse process (analogous to sampling
temperature).

SE(3)-equivariant denoiser The core of Genie is its SE(3)-equivariant denoiser ϵθ(F (xt), t),
which reasons over reference frames to predict the noise injected during the forward process. Figure
1 summarizes Genie’s architecture. The denoiser consists of an SE(3)-invariant encoder, which
transforms individual residue and residue-residue pair features into single and pair representations,
and an SE(3)-equivariant decoder, which uses Invariant Point Attention (Jumper et al., 2021) to
update single representations that are in turn used to update input reference frames. Final noise
vectors are computed as the displacement between the translation component of the updated frames
and that of the input frames. For more details refer to Lin and AlQuraishi (2023).
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3 METHODS

In this work we extend Genie’s architecture and training procedure to enable motif scaffolding. We
also substantially improve the core unconditional model through data augmentation and scaling.

Motif representation for conditional generation Genie’s architecture naturally permits integration
of conditional sequence and structure information into the diffusion process. We do so by encoding
the residues of each motif as one-hot vectors and concatenating these encodings to the single residue
features. We encode the structure of each motif using the pairwise distance matrix of its Cα atoms.
This representation is SE(3)-invariant as it does not encode the absolute position and orientation of
the motif(s), and is unlike the motif conditioning procedures of other methods (e.g., RFDiffusion and
FrameFlow), which fix motif coordinates and are thus sensitive to initial placement(s).

Our approach sidesteps a challenge in multi-motif scaffolding, where the design objective leaves
the relative positions and orientations of motifs unspecified. By representing motif structures using
pairwise distance matrices that specify intra-motif but not inter-motif distances, Genie 2 learns to
satisfy the constraints of each motif while generating self-consistent configurations of inter-motif
geometries. Figure 1 illustrates the types of (multi-)motif templates that can be specified. Note that
even in single motif scaffolding, a motif may be non-contiguous by comprising multiple segments.
What differentiates single and multi-motif scaffolding is that inter-segment geometric relationships
are specified while inter-motif relationships are not. Genie 2’s formulation does require specifying
sequence length separations between motifs, either by fixing them or sampling from a distribution.

Training Genie 2 is trained in a purely conditional manner with every training example constituting
a (single) motif scaffolding task. Tasks are constructed by first sampling structures from our training
dataset to serve as ground truths. A target motif is then constructed for each structure by sampling
Ns segments totaling Nr residues, where Ns ∼ U(1, 4), Nr ∼ U(⌊0.05N⌋, ⌈0.5N⌉), and N is
again the length of the protein. The starting positions and lengths of motif segments are randomly
chosen subject to the number of motif residues totalling Nr. Algorithm 1 describes the task sampling
procedure in more detail. We initially experimented with training on varying ratios of conditional and
unconditional tasks but found that higher proportions of conditional tasks generally yielded better
performance on both types of tasks, and thus switched to purely conditional training. We include
an analysis of this behavior in Appendix B.1. Due to computational constraints, we limit sequence
length to 256 during training; however, Genie 2 is capable of generating proteins longer than 256
residues. In addition, we do not train on multi-motif scaffolding as our input representation permits
under-specification of geometric relationships as an inference-time choice. Genie 2’s performance on
multi-motif scaffolding thus represents out-of-distribution generative generalization.

Algorithm 1 Motif construction for conditional training task
Require: Sampled structure x, a sequence of Cα coordinates of length N

Ns ∼ U(1, 4) ▷ Number of segments in the motif
Nr ∼ U(⌊0.05N⌋, ⌈0.5N⌉) ▷ Number of residues in the motif
B ← [0, b1, b2, · · · , bNs−1, Nr] where b1, b2, · · · , bNs−1

are randomly sampled from {1, 2, · · · , Nr − 1}
without replacement and sorted in ascending order.

L← [l1, l2, · · · , lNs
] where Li = Bi −Bi−1 ▷ Split motif residues into segments

M = Flatten(Permute([S1, S2, · · · , SN−Nr ,M1,M2, · · · ,MNs ])) where
Si = [0] for i ∈ [1, N −Nr] ▷ Represents a scaffold residue
Mj = [1, 1, · · · , 1] where |Mj | = lj for j ∈ [1, Ns] ▷ Represents a motif segment

return M where for i ∈ [1, N ] ▷ Represents a motif sequence mask
M[i] = 1 indicates that residue i is a motif residue
M[i] = 0 indicates that residue i is a scaffold residue

Data augmentation Diffusion models require large datasets to robustly capture complex distri-
butions. Generative protein models have thus far relied on training on experimentally determined
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protein structures from the Protein Data Bank (PDB) (Berman et al., 2002; Burley et al., 2023).
Despite the enormous experimental efforts that have gone into assembling the PDB, its size remains
limited to ~20,000 proteins of relevant lengths. With the development of highly accurate protein
structure prediction, we hypothesized that augmenting Genie training with confidently predicted
protein structures could boost its performance by expanding the space of observed folds beyond
those present in the PDB. Consequently, we train Genie 2 using the AlphaFold database (AFDB)
(Varadi et al., 2022), which consists of approximately 214M AlphaFold 2 predictions spanning nearly
the entirety of UniProt (Consortium, 2023). As AFDB is highly structurally redundant, we use
a subsampled version (Barrio-Hernandez et al., 2023) that applies FoldSeek (Van Kempen et al.,
2024) to cluster entries based on structural similarity. We start with all cluster representatives from
the FoldSeek-clustered database and then filter them using a pLDDT threshold of >80, to enrich
for highly confident predictions, and a maximum sequence length of 256. This results in 588,570
structures. For comparison, we also train a version of Genie 2 on the PDB and observe that the
performance of PDB-trained Genie 2 falls behind that of AFDB-trained Genie 2. Further details and
results on PDB-trained Genie 2 are included in Appendix B.3.

Loss function We minimize the loss function below, which computes the mean squared error
between predicted and ground truth noise:

L(θ) = Et,x0,ϵ

[
1

N

N∑
i=1

∥∥ϵit − ϵiθ(F (xt), t)
∥∥2] (4)

= Et,x0,ϵ

[
1

|M|+ |S|

(∑
i∈M

∥∥ϵit − ϵiθ(F (xt), t)
∥∥2 +∑

i∈S

∥∥ϵit − ϵiθ(F (xt), t)
∥∥2)] (5)

whereM and S are the set of motif and scaffold residue indices, respectively. Under this construction,
motifs are enforced as a soft constraint, ensuring that the model is responsive to motif specifications
while also designing the protein as a whole.

4 UNCONDITIONAL PROTEIN GENERATION

To systematically assess Genie 2 and competing methods on unconditional protein generation, we
conduct two sets of analyses. First, we assess methods without accounting for length while restricting
the longest designed protein to 256 residues (Section 4.2). This reflects Genie 2’s in-distribution
generative power since it is trained on proteins up to 256 residues long. Second, we assess methods
in a length-specific manner up to 500 residues (Section 4.3) to quantify Genie 2’s out-of-distribution
generative capabilities. In both analyses, we rely on the evaluation metrics described in Section 4.1.
We compare Genie 2 to Chroma, FrameFlow, Proteus and RFDiffusion. The latter is widely perceived
as the current state-of-the-art protein design model and has been extensively validated. We note that
while Chroma contains a built-in sequence design network, we find it to underperform ProteinMPNN
and so exclude it; instead we adopt the same evaluation pipeline across all methods.

4.1 EVALUATION METRICS

Designability A structure that can be plausibly realized by some protein sequence is one that is
designable. To determine if a structure is designable we employ a commonly used pipeline (Trippe
et al., 2022) that computes in silico self-consistency between generated and predicted structures. First,
a generated structure is fed into an inverse folding model (ProteinMPNN (Dauparas et al., 2022)) to
produce 8 plausible sequences for the design. Next, structures of proposed sequences are predicted
(using ESMFold (Lin et al., 2022)) and the consistency of predicted structures with respect to the
original generated structure is assessed using a structure similarity metric (TM-score (Zhang and
Skolnick, 2004; Xu and Zhang, 2010)). Using this pipeline, we consider a generated structure to
be designable if it is within 2Å RMSD of the most similar predicted structure (scRMSD ≤ 2) and
the structure is confidently predicted (mean pLDDT ≥ 70). Over a set, "designability" quantifies
the fraction of designable structures within it. We note that designability alone can be misleading
because it does not account for structural diversity–for example, a model that has mode-collapsed
into a single designable structure achieves perfect designability.
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Table 1: Unconditional generative performance of structure-based diffusion models.

METHOD DESIGNABILITY DIVERSITY F1 PDB NOVELTY AFDB NOVELTY

CHROMA 0.70 0.51 0.59 0.13 0.04
PROTEUS 0.90 0.30 0.45 0.04 0
RFDIFFUSION 0.96 0.63 0.76 0.26 0.14
GENIE 2 0.96 0.91 0.93 0.41 0.21

Diversity Complementing designability is the diversity of a generated protein set. To quantify
diversity we start by hierarchically clustering (with single linkage) the set of designable structures.
We exclude non-designable structures as we do not expect them to be realizable and including them
would thus inflate diversity. As sequence lengths vary within a set of structures, we use TMAlign
(Zhang and Skolnick, 2005) to compute the pairwise TM scores of all structures and use a threshold
of 0.6 as cutoff (thus any pair of structures across clusters would have a TM score of at most 0.6). We
then compute "diversity" as the fraction of distinct designable clusters within the set. As diversity
already enforces designability of generated clusters, we find that it better reflects model capability
than designability. Note that diversity depends on the number of samples generated, and tends to 0 as
sample size increases. In all our experiments we use a fixed sample size for even comparisons.

F1 score Following Lin and AlQuraishi (2023), we compute the harmonic mean between des-
ignability (pstructures) and diversity (pclusters) as follows:

Fβ = (1 + β2) · pstructures · pclusters

β2 · pstructures + pclusters
(6)

where β ∈ R+ controls the relative weighting of designability and diversity. We set β = 1 and report
the metric as F1 score.

Novelty Beyond designability and diversity, we also quantify the novelty of generated structures
with respect to reference datasets and, by extension, the known structural universe. To compute
the novelty of a generated structure we again employ TM-score as our structure similarity metric
and use TMAlign to compute the TM scores between a generated structure and all structures in a
reference dataset. We consider a generated structure to be novel if it is designable and its TM-score
to any reference structure is at most 0.5. Similar to our diversity calculations, we apply hierarchical
clustering (with single linkage and a TM-score threshold of 0.6) to the set of novel structures and
define "novelty" to be the fraction of distinct novel clusters within a set of generated structures. We
measure novelty with respect to both the PDB and Foldseek-clustered AFDB datasets (the latter being
our training dataset) and term these measures "PDB novelty" and "AFDB novelty", respectively.

4.2 IN-DISTRIBUTION PERFORMANCE ANALYSIS

We assess Genie 2, Chroma, Proteus and RFDiffusion by generating 5 structures of every length
ranging from 50 to 256 residues (1,035 structures in total). We omit FrameFlow here since it is
trained using a maximum sequence length of 128, but include direct comparisons with FrameFlow
in Section 4.3. Table 1 summarizes the performance of all methods on our key metrics. Relative to
Proteus and RFDiffusion, Genie 2 achieves comparable designability and much higher diversity and
novelty. This suggests that as a core unconditional model, Genie 2 best captures foldable protein
structure space, and may thus serve as a superior engine for downstream sampling-based protein
design tasks (Wu et al., 2024b; Didi et al., 2023).

In Figure 2A, we visualize the secondary structure distribution of generated proteins. While all
methods yield a wide range of secondary structure elements, the resulting distributions are biased
(relative to AFDB), with beta strand-containing structures (top left of distribution) and loop elements
(bottom left) being generally underrepresented. There are multiple possible reasons for this bias.
First, the high frequency of helices in the training dataset leads to models that favor generating helical
structures. Second, alpha helices are likely easier to generate than beta sheets as they involve largely
local interactions while sheets may involve long-range interactions. Third, we assess Genie 2 at a
low sampling noise scale as it yields better results, but this may shift the model from its learned
distribution. We test this hypothesis by visualizing the distribution of secondary structures generated
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Figure 2: Visualizations of in-distribution performance on unconditional generation. (A) Secondary
structure distributions of proteins generated by Chroma, Proteus, RFDiffusion and Genie 2. (B)
Secondary structure distributions of proteins generated by Genie 2 when sampling noise scale (γ in
equation (3)) is set to 0 and 1. For reference, we also include the secondary structure distribution
of 1,000 structures randomly drawn from AFDB (far right). (C) Self-consistency results on 1,000
randomly chosen structures from the PDB and clustered AFDB datasets.

by Genie 2 under a normal noise scale (γ = 1) in Figure 2B. We observe that the resulting distribution
is in fact consistent with that of the clustered AFDB dataset.

This raises the question of whether low sampling noise scale is necessary or, alternatively, why it
helps improve Genie 2’s performance. To investigate this we ran our self-consistency pipeline on
1,000 randomly chosen structures from the clustered AFDB dataset. We found that only 42.4%
of these structures are designable. When our designability criteria is relaxed to scTM ≥ 0.5 and
pLDDT ≥ 70, this number rises to 80.2% (Figure 2C). For comparison, 87.2% of PDB structures are
considered designable by the original criteria. Since we use AFDB for training, this might explain
why designability is low at normal noise scale, while lower noise scale leads to higher fidelity. In
effect, sampling at a low noise scale enables Genie 2 to leverage a larger structural dataset (with
lower fidelity) during training while maintaining high fidelity at sampling time. We also note that
ProteinMPNN was only trained on the PDB and thus it is possible that the apparent discrepancy in
designability between the PDB and AFDB is due to a bias in ProteinMPNN towards the PDB.

4.3 LENGTH-BASED PERFORMANCE ANALYSIS

We next assess generative performance in a length-dependent manner. For a subset of sequence
lengths ranging from 50 to 500 residues, we generate 100 structures and assess them using our design
metrics. Figure 3A shows the scRMSD distribution across sequence lengths while Figures 3B and 3C
plot designability and diversity as a function of sequence length, respectively. At nearly all assessed
lengths, Genie 2 has comparable designability to RFDiffusion but higher diversity. For short proteins
(<200 residues), Genie 2 exhibits considerably higher diversity (doubling that of RFDiffusion at 100
residues), which is noteworthy as shorter lengths constitute smaller design spaces. While Proteus
achieves higher designability than Genie 2 and RFDiffusion for longer proteins, its diversity (number
of unique designable structures) is comparable to that of Genie 2 and RFDiffusion for longer proteins
(>400 residues) and substantially worse for shorter proteins (<300 residues).

Generative models generally struggle to create larger proteins due to their increased complexity.
As sequence length increases, designability decreases and in turn so does diversity, likely because
diversity depends on the number of designable proteins. Larger protein lengths should in principle
permit greater diversity but they are harder to generate. Nonetheless, despite having been trained on
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Figure 3: Length-based assessment of methods. For each method/sequence length combination, we
generate 100 structures. (A) Box-and-whisker plots of scRMSDs between generated structures and
their most similar ESMFold-predicted structures. Asterisks (*) indicate that sequence lengths exceed
the maximum seen during training. (B-C) Plots of designability (B) and diversity (C) as a function of
sequence length, with the same color scheme as (A). Out-of-distribution generation performance is
represented with crosses and dashed lines. (D) Representative structures generated by Genie 2.

monomers of at most 256 residues, Genie 2 can generate 500-residue structures with comparable
or better performance than competing methods. For reference, RFDiffusion uses a crop size of 384
during training while Chroma and Proteus train on even larger proteins (>500 residues) owing to their
efficient graph neural networks. Figure 3D shows examples of Genie 2 designed structures.

5 MOTIF SCAFFOLDING

In this section we assess Genie 2 on single motif scaffolding and compare it to RFDiffusion and
FrameFlow-amortized (Yim et al., 2024) (henceforth "FrameFlow") on a common set of design tasks.
We also assess Genie 2 on multi-motif scaffolding using a suite of 6 multi-motif tasks that we curated.

5.1 EVALUATION METRICS

Motif scaffolding tasks consist of sequence and structure constraints on motif(s) plus length (min/max)
constraints on the scaffolds and protein. To solve a given task, we first sample a constraint-satisfying
length for each scaffold segment while ensuring that total protein length is also within specifications.
These lengths, along with the sequence and structure of motif(s), are passed as conditions to Genie 2.
We quantify success using the criteria of RFDiffusion, which requires that generated structures achieve
scRMSD ≤ 2Å, pLDDT ≥ 70, and pAE ≤ 5 to be considered designable, and for designed motif(s)
to have backbone RMSD ≤ 1Å with respect to each motif to be considered constraint-satisfying.

While most previous studies, including RFDiffusion, use success rate as the evaluation metric, we
find that this tends to inflate performance, as it is possible to achieve high success rates by repeatedly
generating only one or a few successful designs, i.e., while suffering from mode collapse. Instead,
and similar to Yim et al. (2024), we cluster successful designs based on structure similarity and report
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Figure 4: Comparison of Genie 2, RFDiffusion, and FrameFlow on single-motif scaffolding. (A)
Performance of models across 24 single-motif scaffolding tasks. Summary statistics are shown in
table (right). Example Genie 2 designs are shown (bottom) for successful task 3IXT (green) as well
as failed task 4JHW (red). Scaffolds (white), motifs (blue), and unsatisfied sought motifs (red) are
overlaid. (B) Plot of number of unique successes as a function of sample size.

the number of unique successes. This approach better balances designability with diversity when
assessing motif scaffolding performance. We use hierarchical clustering with single linkage and a
TM-score threshold of 0.6. For each motif scaffolding problem, we sample 1,000 structures.

5.2 SINGLE-MOTIF SCAFFOLDING

For evaluation we use an existing benchmark (Watson et al., 2023) comprising 25 tasks curated from
6 recent publications. We exclude one task, 6VW1, as its motif consists of segments from multiple
protein chains, a requirement not supported by Genie 2. Figure 4A summarizes the performance of
FrameFlow, RFDiffusion, and Genie 2. Relative to other methods, Genie 2 yields a greater number of
unique designs and solves more motif scaffolding tasks. We show examples of successful designs in
Figure 4A and Appendix F.5. We observe that the gap in number of unique successes between Genie
2 and competing methods widens as sample size increases (Figure 4B), suggesting Genie 2 captures a
larger and more diverse structure space than other methods. Genie 2 does fail on one problem, 4JHW,
that RFDiffusion and FrameFlow also fail on, which involves scaffolding the RSV F-protein site-0.
To better understand this failure case, we visualize the two closest designs (red box in Figure 4) and
observe that while Genie 2 yields designable structures it does not satisfy the motif constraints.

Analyzing individual motif scaffolding tasks, we observe that Genie 2 generates more unique designs
for 12 problems while FrameFlow generates more unique designs for 8 problems, suggesting that the
two methods complement each other well.

In addition to the above backbone-based analysis, we note that the validity of side-chain atom
configurations can be essential for successful motif scaffolding. To address this question we perform
an analysis with one additional constraint, requiring all motif atoms to be within 2Å of the target
motif. We observe similar trends to the above, which we summarize in Appendix F.3.
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Figure 5: Multi-motif scaffolding. (A) Successful designs for task 1PRW_four (scaffolding with four
Ca2+ ion binding sites) and 4JHW+5WN9 (scaffolding with RSV-F site II epitope and RSV-G 2D10
epitope). Scaffolds are in grey and different motifs are colored distinctly. (B) (Top) Successful design
of a multi-epitope immunogen. (Bottom) Individual epitope designs superposed over targets (red).

5.3 MULTI-MOTIF SCAFFOLDING

To assess multi-motif scaffolding in Genie 2, we curated 6 tasks where each requires multiple motifs,
ranging from designing an immunogen with two epitopes (Yang et al., 2021) to scaffolding two Ca2+

binding sites (four EF hand motifs) (Wang et al., 2022; Fallon and Quiocho, 2003). This set is meant
to reflect the breadth of potential design problems, including immunogen, binder, and enyzme design.
More details are included in Appendix C.

Genie 2 solves 4 of the 6 tasks. Figure 5A shows designs for task 1PRW_four (scaffolding with four
Ca2+ binding sites) and 4JHW+5WN9 (scaffolding with RSV-F site II and RSV-G 2D10 epitopes).
More results are in Appendix G. We also apply Genie 2 to a multi-motif task proposed by Castro
et al. (2024), which scaffolds an immunogen containing three unique epitopes from the respiratory
syncytial virus (RSV) fusion protein. Genie 2 solves the task with only 1,000 samples (Figure 5B).

6 LIMITATIONS AND FUTURE WORK

Genie 2 achieves state-of-the-art performance on both unconditional generation and motif scaffolding.
Yet, it takes longer to sample than other methods, requiring 1,000 denoising iterations vs. 100
(FrameFlow), 500 (Chroma), and 50 (RFDiffusion). Appendix H summarizes sampling times across
sequence lengths. One future direction is thus to improve sampling efficiency. Genie 2 also employs
triangular multiplicative updates, which scale cubically with sequence length, disproportionately
affecting larger design tasks. A second future direction is thus to reduce the time and space complexity
of Genie 2’s architecture to enable generation of and training on larger proteins.
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A ADDITIONAL DETAILS ON GENIE 2

A.1 FRENET-SERRET FRAME CONSTRUCTION

Let xi denotes the Cα coordinate at residue i. Following Lin and AlQuraishi (2023), we construct
the Frenet-Serret frame at residue i (denoted as Fi) as

ti =
xi+1 − xi

∥xi+1 − xi∥

bi =
ti−1 × ti

∥ti−1 × ti∥

ni = bi × ti

Ri =
[
ti,bi,ni

]
Fi = (Ri,xi)

For the frames of terminal residues, the first residue is assigned the same frame as the second residue,
while the last residue is assigned the same frame as the second-to-last residue.

A.2 HYPERPARAMETER CHOICES

In Table 2 we detail the key hyperparameters of the Genie 2 architecture and highlight differences
from the original Genie model. For Genie 2, we increase input embedding and single representation
dimensions as we found this improves performance without substantially impacting training speed.
Due to the increase in model complexity, Genie 2 consists of 15.7M trainable parameters, ∼4x the
original Genie architecture. However, Genie 2 remains four times smaller than RFDiffusion, which
has 59.8M trainable parameters.

Table 2: Key hyperparamters of Genie and Genie 2. Updated values are indicated in bold.

Hyperparameter Genie Genie 2

Number of parameters 4.1M 15.7M

Input embedding dimension
Residue index 128 256
Chain index - 64
Diffusion timestep 128 512

Representation dimension Single representation 128 384
Pair representation 128 128

SE(3)-equivariant decoder Number of IPA layers 5 8

A.3 TRAINING

For training, we use the Adam (Kingma and Ba, 2014) optimizer with a constant learning rate of
10−4. We train Genie 2 using data parallelism on 8 Nvidia A100 GPUs with an effective batch size
of 48. We train the model for 40 epochs (∼5 days) for a total of ∼960 GPU hours. In comparison,
RFDiffusion is initialized with pretrained weights from RoseTTAFold (Baek et al., 2021), whose
training requires 64 Nvidia V100 GPUs for 4 weeks. Training of RFDiffusion takes 3 days on
8 Nvidia A100 GPUs. Hence, Genie 2 requires much less computational resources to train than
RFDiffusion.

A.4 SAMPLING

To improve designability, we adjusted the sampling noise scale (γ in Equation (3)) to trade diversity
for designability. We set γ = 0.6 and γ = 0.4 for unconditional generation and motif scaffolding,
respectively, as these settings provided the best results. Moreover, for motif scaffolding, we use the
checkpoint at epoch 30 since it gives slightly better performance. Appendix E.4 provides further
information on the selection of model checkpoints and Appendix E.3 provides further discussions on
the effect of sampling noise scale.
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A.5 ADDITIONAL BENCHMARKING DETAILS

For competing methods, we use their pretrained weights, together with their default hyperparameter
settings, provided in their GitHub repositories. Specifically for sampling noise scale, RFDiffusion
samples with 50 steps at a noise scale of 1; Proteus and CarbonNovo sample with 100 steps at a
noise scale of 0.1. Chroma, FrameFlow and MultiFlow follow different sampling procedures and
thus sampling noise scale is inapplicable.
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B ABLATION STUDIES

In this section we provide ablation studies on Genie training. To evaluate models, we follow the
same procedure from Section 4.2 when assessing unconditional generation performance: for each
model, we generate 5 samples per sequence length ranging from 50 to 256 residues. For single-motif
scaffolding evaluation, we use the pipeline described in Section 5.2, but sample only 100 designs per
motif scaffolding problem to minimize computational costs.

B.1 EFFECT OF VARYING CONDITIONAL TASK RATIO

We experimented with varying the frequency of conditional vs. unconditional tasks during training
(0.0, 0.2, 0.5, 0.8, and 1.0). Due to computational constraints, we trained models only up to 10 epochs.
Although models do not fully converge, we believe the trends are still indicative of final performance.

Table 3 summarizes the performance of these models on both unconditional protein generation and
single motif scaffolding. As the conditional task ratio increases, motif scaffolding performance
generally improves, with the best performance achieved when the conditional task ratio equals 1.
Surprisingly, unconditional generation performance fluctuates but is ultimately also maximized when
conditional tasks are exclusively sampled. As a result we use a conditional task ratio of 1 during all
training runs.

Table 3: Unconditional generation and motif scaffolding performance by conditional task ratio.
SUCCESSES denote total number of unique successes across all problems.

RATIO
UNCONDITIONAL GENERATION MOTIF SCAFFOLDING

DESIGNABILITY DIVERSITY F1 SOLVED SUCCESSES

0.0 0.858 0.771 0.812 1 6
0.2 0.892 0.752 0.816 14 101
0.5 0.740 0.649 0.692 13 98
0.8 0.865 0.783 0.822 18 179
1.0 0.898 0.802 0.847 19 202
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B.2 EFFECT OF NUMBER OF DIFFUSION STEPS

We experimented with using a different number of diffusion steps during training (100, 200 and
500). We trained each model for 40 epochs and compared their performance with the model in the
main text, which is trained with 1,000 diffusion steps. Table 4 summarizes performance on both
unconditional generation and motif scaffolding. For consistency, we use a sampling noise scale of
0.6 for unconditional generation and 0.4 for motif scaffolding (same as the main text).

While Genie 2 achieves the best performance on both unconditional generation and motif scaffolding
when trained with 1,000 diffusion steps, its performance is comparable when trained with fewer
diffusion steps (number of diffusion steps during generation is always matched to that used during
training). When compared to existing state-of-the-art protein diffusion models (Table 1), Genie 2
achieves comparable designability but higher diversity even when trained with as few as 100 diffusion
steps. Thus, Genie 2 provides support for fast inference with minimal loss of the model’s generative
capability. Detailed sampling time statistics for Genie 2 trained with fewer diffusion time steps
are included in Table 14; compared to other models, Genie 2 trained with 100 diffusion step has
comparable sampling efficiency when generating long proteins, but much higher sampling efficiency
when generating short proteins.

Table 4: Unconditional generation and motif scaffolding performance by number of diffusion steps.
SUCCESSES denote total number of unique successes across all problems. In the last row, we include
the performance of RFDiffusion for reference.

DIFFUSION STEPS
UNCONDITIONAL GENERATION MOTIF SCAFFOLDING

DESIGNABILITY DIVERSITY F1 SOLVED SUCCESSES

100 0.90 0.82 0.86 20 332
200 0.95 0.70 0.81 21 252
500 0.89 0.81 0.85 19 291

1000 0.96 0.91 0.93 21 345
RFDIFFUSION 0.96 0.63 0.76 21 223
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B.3 COMPARISON WITH PDB-TRAINED GENIE 2

We train and assess a version of Genie 2 trained exclusively on the PDB, unlike the model described in
the main text which is trained on the clustered AFDB database. To train Genie 2 on the PDB, we obtain
monomeric PDB structures with a cutoff date of April 2, 2024. We further filter these structures to
have a maximum sequence length of 256 and a minimum resolution of 5Å while discarding structures
with missing Cα atom coordinates. This results in 17,970 structures. To simplify comparison, we use
the same set of hyperparameters described in Appendix A.2 and train the model on the PDB dataset
for 1,600 epochs, which is equivalent in number of training iterations to ~40 epochs when training
on the clustered AFDB dataset. For assessment, we use the 800th epoch checkpoint since it gives
slightly better performance and we sample at a noise scale of 0.6 (same as the main text). Table 5
compares the performance of Genie 2 trained on the PDB with the performance of Genie 2 trained on
AFDB, demonstrating better generation performance by the latter model.

Table 5: Unconditional generation and motif scaffolding performance by training dataset. EPOCHS
denote the number of training epochs. SUCCESSES denote total number of unique successes across
all problems.

DATASET EPOCHS
UNCONDITIONAL GENERATION MOTIF SCAFFOLDING

DESIGNABILITY DIVERSITY F1 SOLVED SUCCESSES

PDB 800 0.736 0.630 0.679 19 194
AFDB 20 0.892 0.804 0.846 19 270
AFDB 40 0.958 0.905 0.931 21 345
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C MULTI-MOTIF SCAFFOLDING BENCHMARK

In Table 6, we provide detailed configurations for each multi-motif scaffolding task. We name each
problem using the names of PDB structures that contain the motif(s) used in the problem. Additional
postfixes are added to distinguish between problems whose motifs come from the same PDB structure.
In the third column ("configuration"), we provide a detailed input specification for each multi-motif
scaffolding problem. Each bolded part denotes a motif segment, including its location in the PDB
structure. For example, "5WN9/A170-189{2}" in problem 4JHW+5WN9 indicates that the motif
segment comes from residue 170 - 189 of Chain A in the protein 5WN9, and "2" (in curly bracket)
indicates that this motif segment belongs to the second motif. Each non-bolded part denotes a scaffold
segment with minimum and maximum lengths specified. At sampling time, each scaffold length is
sampled within this range. For example, "10-40" in problem 4JHW+5WN9 indicates that the scaffold
has a length between 10 and 40 (inclusive). The last column ("Total length") specifies the minimum
and maximum length requirements for the whole sequence.

Table 6: The benchmark set of multi-motif scaffolding problems.

Name Description Configuration Length

4JHW+5WN9 (Yang
et al., 2021)

Two epitopes 10-40, 4JHW/F254-278{1}, 20-50,
5WN9/A170-189{2}, 10-40

85-175

1PRW_two (Wang
et al., 2022; Fallon and
Quiocho, 2003)

Two 4-helix bundles 5-20, 1PRW/A16-35{1}, 10-25, 1PRW/A52-
71{1}, 10-30, 1PRW/A89-108{2}, 10-25,
1PRW/A125-144{2}, 5-20

120-200

1PRW_four (Wang
et al., 2022; Fallon and
Quiocho, 2003)

Four EF-hands 5-20, 1PRW/A21-32{1}, 10-25, 1PRW/A57-
68{2}, 10-25, 1PRW/A94-105{3}, 10-25,
1PRW/A125-144{4}, 5-20

88-163

3BIK+3BP5 (Bryan
et al., 2021)

Two PD-1 binding motifs 5-15, 3BIK/A121-125{1}, 10-20,
3BP5/B110-114{2}, 5-15

30-60

3NTN (Agnew et al.,
2011; Chalkley et al.,
2022)

Two 3-helix bundles 5-15, 3NTN/A342-348{1}, 10-10,
3NTN/A367-372{2}, 10-20, 3NTN/B372-
367{2}, 10-10, 3NTN/B348-342{1}, 10-20,
3NTN/C342-348{1}, 10-10, 3NTN/C367-
372{2}, 5-15

99-139

2B5I (Ren et al., 2022;
Silva et al., 2019)

Two binding sites 5-15, 2B5I/A11-23{2}, 10-20, 2B5I/A35-
45{1}, 10-20, 2B5I/A61-72{1}, 5-15,
2B5I/A81-95{2}, 20-30, 2B5I/A119-133{2}

116-166

For problem 3NTN, the original PDB structure is a homotrimer. It consists of three helices, which
together form a binding site for Ni2+ ion and a binding site for Cl− ion. When setting up this
multi-motif scaffolding problem, we are interested in whether it is possible to combine two binding
sites (formed by multiple chains) into a single-chain protein. One possible reason that Genie 2 fails
on this task might be that this problem is not solvable given the current specification.
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D DISCUSSION ON SELF-CONSISTENCY PIPELINE

D.1 LIMITATIONS OF SELF-CONSISTENCY PIPELINE

While the self-consistency pipeline we employ is a widely used in silico evaluation pipeline for
protein design, it cannot replace experimental validations due to the complexity involved in func-
tional protein design (for example, conformational changes), most of which are not captured by
existing computational models. However, given the expense and difficulty of experimental validation,
self-consistency pipelines can serve as an initial filter for potential design candidates to improve
experimental success rates.

In addition, while self-consistency pipelines can be reliable at assessing the designability of rigid
structures (more specifically, structures with more than 50% secondary structure contents), they are
less reliable at assessing flexible structures due to the lack of a single correct solution and the inability
of current structure prediction models to predict conformational ensembles. This potential flexibility
of designed proteins could thus deflate self-consistency metrics, resulting in inaccurate assessment
of designability. Some existing methods, such as RFDiffusion, have opted to train only on PDB
structures with at least 50% secondary structure content. In Genie 2 we do not take this approach,
training on the entirety of AFDB including potentially flexible structures, and this may why Genie 2
exhibits low designability at the normal sampling noise scale (more details in Appendix D.3). By
learning to model the data distribution of AFDB structures, Genie 2 generates more flexible structures
at normal sampling noise scale (Figure 2B), but whether these structures are viable or not cannot be
assessed by existing self-consistency pipelines.

D.2 EFFECT OF DIFFERENT INVERSE FOLDING MODELS

Figure 6 visualizes the scRMSD distribution across sequence lengths using different inverse folding
models. We observe that our self-consistency pipeline behaves similarly regardless of whether
ProteinMPNN or ESM-IF is used. This suggests that even though ProteinMPNN is trained only on
PDB structures (compared to ESM-IF, which is also trained on AFDB structures), it does not exhibit a
bias towards PDB structures. We also observe that our self-consistency pipeline performs differently
between PDB and AFDB structures; a detailed analysis on this observation is provided in Appendix
D.3.

Figure 6: Behavior of the self-consistency pipeline when using different inverse folding methods and
randomly sampled structures from the PDB versus AFDB. For each dataset/length combination, 100
structures are sampled. (A) Distribution of scRMSD across sequence lengths using different inverse
folding models. (B) Distribution of scRMSD across sequence lengths using ProteinMPNN-Ca and
ESMFold as the self-consistency evaluation pipeline.
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D.3 DIFFERENCES IN SELF-CONSISTENCY EVALUATIONS FOR PDB AND AFDB STRUCTURES

In Table 2C, we observe a discrepancy in designability between PDB and AFDB structures. To
better understand this phenomenon, we visualize the distribution of scRMSD as a function of
sequence length in Figure 6B, where 100 structures are sampled for each length bucket. The scRMSD
distributions for AFDB structures are generally above that for PDB structures across all lengths, and
the difference increases with sequence length.

One hypothesis for this observation is that proteins tend to contain multiple domains as their lengths
increase (most single domains range in length between 40 and 200 residues). For a multi-domain
AFDB structure, while each domain may be compact, the linkers that connect its domains can be
flexible, leading to flexibility in the structure of the whole protein and to higher protein radii. PDB
structures, in contrast, are likely enriched for proteins with more stable inter-domain orientations,
either due to crystallization conditions which fix multi-domain proteins into a single conformation
or due to the proteins themselves being inherently less flexible as such proteins are easier to crys-
tallize. Regardless of the root cause, these factors will result in an experimental bias towards less
flexible structures and smaller protein radii (compared to AFDB structures). We see confirmation
of this when visualizing the distribution of protein radii across lengths in Figure 7; for each length
bucket, 100 structures are randomly sampled for evaluation. We observe that as sequence length
increases, differences in protein radii increase between AFDB and PDB structures, consistent with
our hypothesis.

To further substantiate this hypothesis, we visualize an example of an AFDB multi-domain structure
(AFDB ID: Q6GIK1, Figure 8A) and its redesign using ESMFold in Figure 8: while individuals
domain are redesigned accurately using ESMFold (Figure 8C), the flexible linker results in mis-
alignment between the original and redesigned structures, leading to high scRMSD and thus low
designability.

Figure 7: Distribution of protein radii across different sequence lengths. For each length bucket, 100
structures are randomly sampled from each dataset.
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Figure 8: Visualization of a multi-domain AFDB structure (AFDB ID: Q6GIK1) and its ESMFold-
redesigned structure. (A) Visualization of AFDB structure with pLDDT overlaid. (B) AFDB structure
with its ESMFold-redesigned structure aligned using Kabsch’s algorithm. (C) Alignments of AFDB
structure and its ESMFold-redesigned structure based on domain 1 (left) and domain 2 (right).
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E ADDITIONAL RESULTS ON UNCONDITIONAL PROTEIN GENERATION

E.1 COMPARISON WITH GENIE

In this section we compare against the original version of Genie (Lin and AlQuraishi, 2023), specifi-
cally Genie-SwissProt. We include Genie-SwissProt’s performance on unconditional generation in
Table 7 for reference. We use Genie-SwissProt since it is trained on AlphaFold-SwissProt database for
100 epochs and achieves the best performance in both designability and diversity out of all the original
Genie variants we considered. As the evaluation metrics for Genie-SwissProt are consistent with
those in this manuscript, we directly use the numbers that are reported in the Genie paper. We note
that, strictly speaking, it is unfair to compare Genie to Genie 2 due to differences in training dataset,
model architecture, and model complexity. Nonetheless, we find the comparison informative, with
the caveat that there are multiple differences between the two models that extend beyond architecture.

Table 7: Unconditional generative performance of Genie and Genie 2.

METHOD DESIGNABILITY DIVERSITY F1 PDB NOVELTY

GENIE 0.79 0.64 0.71 0.04
GENIE 2 0.96 0.91 0.93 0.41

E.2 SIMILARITY TO PDB AND AFDB STRUCTURES

Figure 9 visualizes the distribution of TM scores to the most similar structure in the reference dataset
(PDB/AFDB) and Figure 9B visualizes the scatterplot of TM scores with respect to the most similar
PDB and AFDB structures (the same set curated for analysis in Table 1). We observe that structures
generated by Genie 2 are more similar to AFDB structures than PDB structures; this is as expected
since Genie 2 is trained to learn the data distribution of AFDB structures.

Figure 9: Similarity to PDB vs. AFDB structures. (A) Distribution of TM scores to the most
similar structure in PDB and AFDB. (B) Scatterplot of TM scores with respect to the most similar
PDB/AFDB structures.
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E.3 EFFECT OF SAMPLING NOISE SCALE

Lowering sampling noise scale has a similar effect to sampling at lower temperature, which trades
diversity for higher designability. However, there is one minor caveat: the noise schedule, or noise
variance at each diffusion step, is predefined as a function of diffusion time step. When lowering the
sampling noise scale, we reduce the variance of noise in the reverse process, which deviates from
the noise schedule that is predefined by the diffusion time steps. Since the diffusion time step is
used as an input condition for the denoiser, such deviation in noise variance implicitly causes the
denoiser to consider each input structure to be noisier than it actually is. This could potentially help
the model to correct for its accumulated errors from prior reverse steps and thus generate structures
with higher quality. However, the mismatch between the noise variance of the input structure and
the model-perceived noise variance (based on the diffusion time step) also leads model inputs to
be out of training distribution. This may deteriorate generative performance. Hence, we consider
sampling noise scale as a hyperparameter to be tuned and profile model performance on unconditional
generation across different noise scales. The results are summarized in Table 8, and indicate that
a noise scale of 0.6 allows the model to generate the most diverse set of structures. Here, for each
sampling noise scale, we generate 5 structures per length between 50 and 256 (1,035 structures in
total).

Table 8: Unconditional generation performance by sampling noise scale.

NOISE SCALE (γ) DESIGNABILITY DIVERSITY F1

0.0 0.636 0.192 0.295
0.2 0.840 0.545 0.661
0.4 0.977 0.856 0.912
0.6 0.958 0.905 0.931
0.8 0.693 0.621 0.655
1.0 0.141 0.129 0.134

An alternative way to interpret the effect of sampling noise scale is to analyze the radius of generated
structures across different sampling noise scales. Here, we consider the radius of a protein (represented
by a trace of Cα atoms) as the distance between the center and the furthest Cα atom. Figure 10A
visualizes the distribution of protein radii across different sampling noise scales (same set of generated
structure as Table 8) and Figure 10B visualizes the distribution of protein radii for 1,000 structures
randomly sampled from our filtered AFDB training set (with a maximum sequence length of 256
residues). We observe that when sampling at the normal noise scale (γ = 1), the distribution of
protein radii resembles that of the AFDB training set. While this implies that Genie 2 learns to model
the training data distribution, it also suggests that Genie 2 learns to generate non-compact proteins
similar to those in AFDB, which has low designability based on our in silico self-consistency pipeline.
This further explains why Genie 2 performs poorly when the sampling noise scale is set to 1. A lower
sampling noise scale contracts the expansion of protein radius in the reverse diffusion process (as
shown in Figure 10A), encouraging the generation of compact protein structures that are more likely
to be designable.

We additionally visualize the secondary structure distribution resulting from different sampling noise
scales in Figure 11. We observe that as the sampling noise scale decreases, secondary structure
diversity also decreases; this drop in diversity is likely due to the contraction of protein radii which
encourages more compact protein structures. Such contraction thus indirectly promotes a higher
content of secondary structures, or more specifically helices, which are more condensed than extended
strands. Hence, we observe that as sampling noise scale decreases, the secondary structure distribution
is shifted towards regions with higher helical content.
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Figure 10: Distribution of protein radii. (A) Distribution of protein radii for Genie 2-generated
structures as a function of sampling noise scale. (B) Distribution of protein radii for 1,000 randomly
sampled structures from PDB and AFDB (with a maximum sequence length of 256 residues to be
consistent with the training setup).

Figure 11: Secondary structure distribution of structures by sampling noise scale.
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E.4 GENIE 2 CAN DESIGN LONGER PROTEINS WHEN TRAINED FOR LONGER

Here we investigate how Genie 2’s performance varies as a function of the number of training epochs.
Figure 12 visualizes Genie 2’s unconditional generation performance as a function of protein length
and across different model checkpoints. For each length, 100 samples are generated and evaluated
using the self-consistency pipeline used in Figure 3. As training continues, Genie 2 significantly
improves on generating diverse longer proteins, surpassing existing methods such as Proteus and
RFDiffusion (in terms of diversity). It is worth noting that as training continues, the performance
on short protein generation slightly declines. This suggests that during training, the model starts by
learning to generate short proteins (an easier task) before tackling the generation of longer proteins
(more challenging task). The decline in diversity of short protein generation could be the result of the
model allocating more resources to modeling longer proteins.

For our unconditional generation analysis in the main text, we select the 40 epoch checkpoint since
it achieves better performance for our in-distribution analysis (on proteins with 50 - 256 residues).
However, Genie 2 is capable of generating more diverse proteins with more than 256 residues than
reported in the main text (by using the 50 epoch checkpoint) and the best generative performance
of Genie 2 could be achieved through a length-based ensemble of Genie 2 training checkpoints (for
example, by using the 40-epoch checkpoint for proteins with at most 256 residues and the 80-epoch
checkpoint for proteins with more than 256 residues). Such ensembling would not affect sampling
efficiency since the checkpoint is selected before sampling based on desired protein length. We
provide a wrapper for this functionality in the Genie 2 repository.
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Figure 12: Length-based assessment of Genie 2 across different model checkpoints. For each
checkpoint/sequence length combination, we generate 100 structures. (A) Box-and-whisker plots of
scRMSDs between generated structures and their most similar ESMFold-predicted structures. (B-C)
Plots of designability (B) and diversity (C) as a function of sequence length, with the same color
scheme as (A).
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E.5 LENGTH-BASED PERFORMANCE ANALYSIS USING SCTM

We provide additional assessments of Genie 2 and competing methods using a second designability
metric, the self-consistency TM score (scTM). scTM is computed using the same pipeline as scRMSD,
described in Section 4.1, except using TM score to measure the structural distance between a generated
structure and its most similar ESMFold-predicted structure. scTM is a less stringent metric than
scRMSD since TM score is less sensitive to minor structural variations. Figure 13A visualizes
the distribution of scTM by sequence length for Genie 2 and competing methods, while Figures
13B and 13C visualize scTM-based designability and diversity as a function of sequence length,
respectively. Here, a structure is considered as scTM-based designable if it satisfies both scTM > 0.5
and pLDDT > 70. Diversity is computed using the same clustering procedure described in section
4.1. Overall trends remain consistent with our main results.

Figure 13: Assessment of Genie 2 and competing methods by sequence length using scTM as the
designability metric. 100 structures are generated per sequence length and method. (A) Distribution of
self-consistency TM between generated structures and the most similar ESMFold-predicted structures.
Asterisk (*) indicates that the sampled sequence length is beyond the maximum sequence length
sampled at training time. (B) Plot of scTM-based designability (percentage of scTM-designable
structures) as a function of sequence length, with the same color scheme as (A). Out-of-distribution
generation is indicated with crosses and dashed lines. (C) Plot of scTM-based diversity (percentage
of unique scTM-based designable clusters) as a function of sequence length, with the same color
scheme as (A). Out-of-distribution generation is indicated with crosses and dashed lines.
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E.6 ANALYSIS OF DESIGNABILITY AS A FUNCTION OF HELICITY

We use the set of Genie 2-generated structures sampled for analysis in Table 1 and visualize their
scRMSD distribution as a function of fraction of helices (Figure 14A) and strands (Figure 14B). While
scRMSD slightly decreases with higher helicity, the majority of generated structures have relatively
low scRMSD independent of helicity. This, combined with the secondary structure distribution shown
in Figure 2A, suggests that while Genie 2 has a tendency to generate more helical structures, its
generation quality of helical and stranded structures is similar.

Figure 14: Distribution of scRMSD as a function of fraction of alpha helices (A) and beta strands
(B). The dataset used for this assessment is the same dataset generated by Genie 2, which is used for
assessment of unconditional generation performance in Table 1.
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E.7 COMPARISONS TO MULTIFLOW AND CARBONNOVO

We compared Genie 2 to MultiFlow (Campbell et al., 2024) and CarbonNovo (Ren et al.), both of
which are capable of joint sequence-structure co-design. For MultiFlow, we use ProteinMPNN for
sequence redesign since it gives better performance on both designability and diversity, while for
CarbonNovo we use sequences predicted by the model. All sequences are folded using ESMFold and
the consistency between ESMFold-predicted structures and designed structures is then computed.
Similar to our assessment in Section 4.2, for each method, we generate 5 samples of every length
ranging from 50 to 256 residues (1,035 structures in total). The results are summarized in Table 9,
which show similar trends as in the main text. While MultiFlow and CarbonNovo achieve similar
performance to Genie 2 on designability, Genie 2 substantially outperforms both on diversity and
novelty.

Table 9: Comparison of unconditional generation between MultiFlow, CarbonNovo, and Genie 2.

METHOD DESIGNABILITY DIVERSITY F1 PDB NOVELTY

MULTIFLOW 0.98 0.61 0.75 0.18
CARBONNOVO 0.94 0.62 0.75 0.16
GENIE 2 0.96 0.91 0.93 0.41
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E.8 ADDITIONAL EXAMPLES OF DESIGNABLE CLUSTERS BY GENIE 2
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Figure 15: Examples of Genie 2 designed structures with in-distribution sequence lengths (within the
maximum sequence length of 256 set at training time).
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Figure 16: Examples of Genie 2 designed structures with out-of-distribution sequence lengths (longer
than 256 residues).
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E.9 ADDITIONAL INFORMATION

Figure 17: Secondary structure distribution of 1,000 randomly sampled structures from PDB (left)
and AFDB (right).
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F ADDITIONAL RESULTS ON SINGLE-MOTIF SCAFFOLDING

F.1 EVALUATION DETAILS

Watson et al. (2023) asserts that RFDiffusion achieves a higher success rate when the noise scale is
set to 0; however, this success rate does not account for the diversity of designed structures. To ensure
a fair comparison, we first assessed the performance of RFDiffusion with noise scale set to 0 and 1.
For each motif scaffolding problem, we sampled 100 structures per problem and evaluated them using
the same pipeline as in Section 5.2. Figure 18 visualizes the number of unique successes by motif
scaffolding problems. We observe that RFDiffusion solves more motif scaffolding problems with
more diverse designs when the noise scale is set to 1. Thus, to maximize RFDiffusion’s performance,
we compare Genie 2 with RFDiffusion with a noise scale of 1 throughout this work.

Figure 18: Performance of RFDiffusion with a noise scale of 0 and 1 across 24 single-motif scaffolding
tasks. Inset (top right) shows a scatter plot of the (unique) success rate of RFDiffusion with a noise
scale of 1 versus RFDiffusion with a noise scale of 0; each point represents a scaffolding task.
Summary statistics are shown in table (left).
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F.2 NUMBER OF UNIQUE SUCCESSES

Table 10: Number of unique successes (out of 1,000 structures) generated by Genie 2, RFDiffusion,
and FrameFlow on each single-motif scaffolding task.

Name Genie 2 RFDiffusion FrameFlow

6E6R_long 415 381 110
6EXZ_long 326 167 403
6E6R_med 272 151 99
1YCR 134 7 149
5TRV_long 97 23 77
6EXZ_med 54 25 110
7MRX_128 27 66 35
6E6R_short 26 23 25
5TRV_med 23 10 21
7MRX_85 23 13 22
3IXT 14 3 8
5TPN 8 5 6
7MRX_60 5 1 1
1QJG 5 1 18
5TRV_short 3 1 1
5YUI 3 1 1
4ZYP 3 6 4
6EXZ_short 2 1 3
1PRW 1 1 1
5IUS 1 1 0
1BCF 1 1 1
5WN9 1 0 3
2KL8 1 1 1
4JHW 0 0 0
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F.3 NUMBER OF UNIQUE SUCCESSES WITH ADDITIONAL ALL-ATOM CONSTRAINT

Table 11: Number of unique successes with all-atom constraint (out of 1,000 structures) generated by
Genie 2, RFDiffusion, and FrameFlow on each single-motif scaffolding task.

Name Genie 2 RFDiffusion FrameFlow

6E6R_long 323 373 103
6EXZ_long 312 167 393
6E6R_med 213 147 92
1YCR 123 7 133
5TRV_long 16 9 16
6EXZ_med 52 25 101
7MRX_128 8 14 23
6E6R_short 24 20 25
5TRV_med 5 2 5
7MRX_85 14 9 18
3IXT 14 3 8
5TPN 8 5 6
7MRX_60 4 1 1
1QJG 0 1 13
5TRV_short 2 1 1
5YUI 1 1 1
4ZYP 2 5 4
6EXZ_short 2 1 3
1PRW 1 1 1
5IUS 1 1 0
1BCF 1 1 1
5WN9 1 0 3
2KL8 1 1 1
4JHW 0 0 0
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F.4 SCATTERPLOT OF SCRMSD VERSUS MOTIF BACKBONE RMSD

Figure 19: Scatterplot of scRMSD versus motif backbone RMSD by problem, where each point
represents one generated structure. The green box denotes the region with scRMSD ≤ 2Å and motif
backbone RMSD ≤ 1Å, which are the two deciding factors of a design’s success.
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F.5 ADDITIONAL EXAMPLES OF SUCCESSFUL MOTIF SCAFFOLDING DESIGNS BY GENIE 2

5T
R

V_
sh

or
t

1Q
JG

5T
PN

5Y
U

I
6E

XZ
_s

ho
rt

6E
6R

_l
on

g

Figure 20: Examples of successfully designed structures by Genie 2 for six single-motif scaffolding
tasks. Scaffolds (white) and motifs (blue) are overlaid.
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F.6 COMPARISON WITH CHROMA

Figure 21 compares the performance of single motif scaffolding between Genie 2 and Chroma using
the same approach as in the main text, except that we sample only 100 structures for each problem.
Genie 2 significantly outperforms Chroma on motif scaffolding, solving more tasks while generating
much more diverse solutions at the same time.

Figure 21: Comparison of Genie 2 and Chroma on single motif scaffolding. Inset (top right) shows a
scatter plot of the (unique) success rate of Genie 2 versus Chroma; each point represents a scaffolding
task. Summary statistics are shown in table (left).
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F.7 SCAFFOLDING WITHOUT MOTIF SEQUENCE INFORMATION

Motif sequence plays an important role in functional motif scaffolding since functions are generally
determined by arrangements of side chain atoms. To investigate the importance of motif sequence for
Genie 2, we perform single motif scaffolding without sequence information. We sample structures
with Genie 2 by providing only the motif structure information as conditional input. We then follow
the same evaluation procedure as described in Section 5.1; note that when inverse folding with
ProteinMPNN, motif sequences are kept fixed in an attempt to preserve motif functionality. Figure
22 visualizes the single motif scaffolding performance of Genie 2 with and without motif sequence
information as model input. We observe a drop in performance when omitting motif sequences
from model input, suggesting that Genie 2 is internalizing sequence information into its latent
representations for better protein design.

Figure 22: Comparison of Genie 2 on single motif scaffolding with or without motif sequence
information as input. Inset (top right) shows a scatter plot of the (unique) success rate; each point
represents a scaffolding task. Summary statistics are shown in table (left).
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G ADDITIONAL RESULTS ON MULTI-MOTIF SCAFFOLDING

G.1 NUMBER OF UNIQUE SUCCESSES

Table 12: Number of unique successes (out of 1,000 structures) generated by Genie 2 on each
multi-motif scaffolding task.

Name Number of Unique Successes

3BIK+3BP5 17
1PRW_four 11
1PRW_two 8
4JHW+5WN9 4
2B5I 0
3NTN 0

G.2 ADDITIONAL EXAMPLES OF SUCCESSFUL DESIGNS BY GENIE 2

Figure 23: Examples of successfully designed structures by Genie 2 for three multi-motif scaffolding
tasks. Scaffolds are in grey and different motifs are colored differently. For 4JHW+4WN9, all four
unique successes are shown in Figure 5.

Figure 23 shows the successful designs of three multi-motif scaffolding problems. The designs
for 3BIK+3BP5 exhibit diverse secondary structures, including structures containing strands (first),
helices (second and fourth), and loops (third). For tasks 1PRW_two and 1PRW_four, the loops of EF-
hand motifs that interact with substrates are well exposed to the surface in all designs. The structures
are diverse and clearly different from the original 1PRW, with the EF-hand motifs distributed
asymmetrically throughout the structure. In the designs of 1PRW_two, the 4-helix bundles are also
in different relative orientations compared to the original 1PRW. For example, in the second design,
the loops of two bundles face the same side. These diverse and novel designs open the possibility of
creating more stable or functional proteins with the desired motifs.
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G.3 CASE STUDIES

In this section, we provide case studies on the two failed multi-motif scaffolding problems, 3NTN
and 2B51, to better understand the potential causes of failure. We also experiment on scaffolding
multiple Ca2+-binding motifs to study the impact of number of sought motifs on generation.

G.3.1 PROBLEM 3NTN: SCAFFOLDING TWO 3-HELIX BUNDLES

Problem 3NTN is constructed from a homotrimer (PDB: 3NTN); it consists of a 3-helix bundle (7
residues per helix) that binds to Cl− ion and a 3-helix bundle (6 residues per helix) that binds to
Ni2+ ion (Figure 24A). Our goal is to design a monomer that incorporates both binding pockets.
Resembling the original protein, we define our multi-motif configuration as shown in Figure 24C,
where blue segments correspond to the Ni2+ binding site, orange segments correspond to the Cl−

binding site, and gray segments correspond to scaffold segments to be designed.

We visualize the scRMSD vs. maximum motif backbone RMSD for all 1,000 designs generated by
Genie 2 in Figure 24B, with the design closest to success shown in Figure 24D. Note that since we
are scaffolding multiple motifs with flexible positions and orientations, we compute backbone RMSD
between the generated and target structure for each motif separately and report the maximum motif
backbone RMSD for the design in Figure 24B. Examining the design closest to success, we observe
that Genie 2 is capable of generating the Cl− binding site but fails to reproduce the Ni2+ binding site.
In addition, the pAE of the design is 7.29, slightly over our success threshold of 5. We suspect that
the predefined multi-motif configuration does not provide sufficient flexibility (i.e., too few residues
in the connecting scaffold segments) for the model to generate viable solutions.

Figure 24: Analysis of the multi-motif scaffolding problem 3NTN. (A) Visualization of PDB structure
3NTN. (B) Scatter plot of scRMSD vs. maximum motif backbone RMSD across 1,000 designs
generated by Genie 2, with success region shown in light green. (C) Multi-motif scaffolding
configuration for problem 3NTN. (D) Closest design to success, with individual binding sites
superposed over targets (red).
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G.3.2 PROBLEM 2B5I: SCAFFOLDING TWO PROTEIN BINDING SITES

For problem 2B5I, the goal is to design a protein that binds to both IL-2 receptor βγc heterodimer
(IL-2Rβγc) and IL-2Rα (or CD25), thus stabilizing variants of IL-2 in both binding sites (Ren et al.,
2022). To construct this multi-motif scaffolding task, we extracted motifs from IL-2 protein (PDB:
2B5I), which forms a complex with IL-2Rβγc and IL-2Rα (Wang et al., 2005). Figure 25A visualizes
these motifs and their interactions with IL-2Rβγc and IL-2Rα, and Figure 25C shows the multi-motif
configuration for this problem.

Similar to the previous case, we use a scatter plot to visualize scRMSD vs. maximum motif backbone
RMSD for all 1,000 designs generated by Genie 2 in Figure 25B, with the design closest to success
shown in Figure 25D. We observe the best design is very close to in silico success, with pAE and
maximum motif backbone RMSD slightly over the success threshold.

Figure 25: Analysis of multi-motif scaffolding problem 2B5I. (A) Visualization of PDB structure 2B5I.
(B) Scatter plot of scRMSD vs. maximum motif backbone RMSD across 1,000 designs generated
by Genie 2, with success region shown in light green. (C) Multi-motif scaffolding configuration for
problem 2B5I. (D) Closest design to success, with individual binding sites superposed over targets
(red).
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G.3.3 SCAFFOLDING MULTIPLE EF-HAND CA2+-BINDING MOTIFS

To better understand how the number of motifs affects model performance, we perform a controlled
study derived from problem 1PRW_four, whose goal is to design a protein that binds with multiple
Ca2+ ions. We extract an EF-hand (helix-loop-helix) Ca2+-binding motif (Figure 26A) from Calmod-
ulin (PDB: 1PRW) and use Genie 2 to design proteins containing increasing numbers of this EF-hand
Ca2+-binding motif (from 1 to 5). For each settings, we sample 1,000 structures and follow the same
evaluation procedure as in the main text. Figure 26C visualizes the multi-motif configuration for this
set of problems.

Figure 26B shows Genie 2’s performance (in terms of number of successes and unique successes)
as the number of motifs increases. Here, the success criteria is same as in the main text, requiring
scRMSD < 2, pLDDT > 70, pAE < 5 and all motif backbone RMSD < 1. As the number of motifs
increases, multi-motif scaffolding performance drops since it is hard to find a viable solution that
satisfies all motif constraints; however, the number of unique successes increases (bounded by the
number of successes) as the number of motifs increases, possibly because the increase in sequence
length provides a larger search space for solutions.

Figure 26: Analysis on scaffolding multiple EF-hand Ca2+-binding motifs. (A) Visualization of
1PRW (PDB: 1PRW) with the Ca2+-binding motif overlaid. (B) Number of successes and unique
successes as a function of number of motifs. (C) Multi-motif configurations for the set of multi-motif
scaffolding problems. (D) Examples of successful designs.
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G.4 COMPARISON WITH RFDIFFUSION

While RFDiffusion does not provide built-in functionality to scaffold multiple motifs with flexible
relative positions and orientations, it is possible to adapt it for multi-motif scaffolding tasks by
randomly sampling relative positions and orientations between motifs and scaffolding these motifs as
a whole with RFDiffusion. We adopt this approach here and compare the performance of RFDiffusion
on multi-motif scaffolding with Genie 2, using the set of multi-motif scaffolding problems detailed in
Appendix C.

For two double-motif scaffolding problems (3BIK+3BP5 and 4JHW+5WN9), where each motif
consists of a single segment, we sampled 100 double-motif configurations by randomly rotating
the motifs and setting the distance between two motif centers to be r, where r ∼ U(5, 15) and
r ∼ U(10, 25), for problems 3BIK+3BP5 and 4JHW+5WN9, respectively. These parameters are
carefully selected based on motif sizes. Any configuration with clashes (i.e., distance between two
atoms from different motifs <2Å) between motifs is rejected. We then generated 10 designs for each
configuration, summing to 1,000 designs in total. For the other four problems, we generate 1,000
multi-motif configurations by randomly rotating all the motifs and sampling motif centers from a 50Å
cube such that all motif centers are at least 10Å distance from one another. As before, configuration
with clashes between motifs are rejected. We then generated 1 design for each configuration, summing
to 1,000 designs in total.

Table 13 compares the performance of RFDiffusion and Genie 2 on multi-motif scaffolding tasks.
In terms of unique successes, Genie 2 outperforms RFDiffusion on 3 out of 4 solved problems,
while RFDiffusion performs better on problem 1PRW_two. Our hypothesis is that while setting
random relative positions and orientations between motifs creates many invalid motif configurations,
it explicitly encourages diversity; in contrast, for Genie 2, diversity relies on the reverse diffusion
process, resulting in differing probabilities with which each viable solution is sampled. This could
explain why Genie 2 generates more successes than RFDiffusion on problem 1PRW_two (since it
implicitly reasons over relative motif positions and orientations) but fewer unique successes (since
some viable solutions have a high probability of being sampled in the sampling stage). It is worth
noting that while RFDiffusion is able to produce viable designs for double-motif scaffolding problems,
it struggles to do so for problems involving more motifs (for example, problem 1PRW_four, which
involves four EF-hand Ca2+-binding motifs) due to the exponentially increasing number of possible
multi-motif configurations.

Table 13: Number of successes and unique successes (out of 1,000 structures) generated by Genie 2
and RFDiffusion on each multi-motif scaffolding task.

PROBLEM
SUCCESSES UNIQUE SUCCESSES

GENIE 2 RFDIFFUSION GENIE 2 RFDIFFUSION

3BIK+3BP5 172 12 17 6
1PRW_four 14 0 11 0
1PRW_two 324 34 8 33

4JHW+5WN9 4 2 4 2
2B5I 0 0 0 0

3NTN 0 0 0 0
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H SAMPLING TIME

In this section, we compare the generation times of Genie 2, RFDiffusion, FrameFlow, and Chroma
at different lengths. We use a single A6000 GPU (48GB memory) and average the inference time of
a single sample over 10 runs. For RFDiffusion, we use the self-conditioning sampler and exclude
pLDDT and amino acid prediction for fair comparison. For Chroma, we use unconditional monomer
sampling and exclude amino acid prediction. We use the simple profiler from PyTorch Lightning
(Falcon and The PyTorch Lightning team, 2019) to profile inference function calls of FrameFlow and
Genie. For Proteus, we used their logger output with the self-consistency pipeline disabled.

Table 14: Sampling time of different methods for proteins of different lengths. For Genie 2, we use
the built-in PyTorch compilation function to speed up the sampling process.

Method Parameters Timesteps Length
50 100 200 300 400 500

Genie 2 15.7M 1000 15.1 18.8 41.3 83.0 152 223
500 4.04 7.54 18.90 39.5 66.4 103
200 1.76 3.01 7.66 15.9 26.11 41.3
100 0.79 1.54 3.80 8.02 13.2 20.8

RFDiffusion 59.8M 50 18.7 21.4 41.2 80.1 137 214
FrameFlow 17.4M 100 3.45 4.33 6.50 9.84 13.8 18.5
Chroma 18.5M 500 22.0 22.6 29.0 35.4 41.8 48.5
Proteus 19.8M 100 5.10 5.23 6.40 9.07 12.7 17.5
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